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Abstract. We present a new method to construct soliton solutions for a large class of nonlinear
systems which are associated with matrix spectral problems of high degree (including a reduction of
the Lamé equations and a generalized sine–Gordon system). The spectral problems are represented
in terms of Clifford numbers. Then the solutions can be obtained in a straightforward way without
using any matrix representation. Among the spectral problems under consideration is the Dirac
equation for a massless particle in the electromagnetic field and its generalizations.

Integrable systems are usually associated with scalar spectral problems (such as the Korteweg–
de Vries hierarchy, associated with the stationary Schrödinger operator [1]) or matrix spectral
problems of low degree. The classical example is given by the AKNS class of integrable
systems (including the nonlinear Schrödinger equation, modified Korteweg–de Vries equation
and sine–Gordon equation) based on sl(2,C) spectral problems [2]. The su(2) reduction of
the AKNS class is associated with the 1+1 analogue of the Dirac equation. The matrix spectral
problems of higher degree (in practice greater than three) create, as a rule, serious technical
problems and, in general, not many examples are known.

In this letter we extend one of the standard techniques of the soliton theory, namely the
Darboux–Bäcklund transformation, to a class of spectral problems in Clifford algebras. They
are formally identical with matrix spectral problems ∂�/∂xk = Uk� (k = 1, . . . , n) of high
degree but U1, . . . , Un and � assume values in a given Clifford algebra. Representing Clifford
numbers by matrices (this can always be done [3]) we may return to a matrix spectral problem.
Well known examples of generators of Clifford algebra are Pauli and Dirac matrices. It turns
out, however, that it is possible and more convenient to work directly with Clifford numbers.

Let us begin with two examples associated with the Clifford algebra C(2n). First, consider
the linear problem [4]

�,k = 1
2γk(λak + bk)� (k = 1, . . . , n) (1)

where γµ (µ = 1, . . . , 2n) generate the Clifford algebra C(2n), i.e. they satisfy relations
γµγν + γνγµ = 2δµν ; then ak := ∑n

j=1 αkjγn+j , bk := ∑n
j=1 βkjγj and αkj , βkj are some
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scalar functions of x1, . . . , xn. We assume βkk = 0. The compatibility conditons for that
system read as follows:

n∑
i=1

αjiαki = 0 αji,k +αkiβjk = 0 (j �= k)

βji,k +βjkβki = 0 (i �= j �= k �= i)

βjk,k +βkj ,j =
n∑

i=1

βjiβki (j �= k).

(2)

From the first two equations it follows that
∑n

i=1 αji,k αji = 0, so we assume that
∑n

i=1 α
2
ji

does not depend on x1, . . . , xn. For a fixed index j , substituting αkj =: Hk and βkj =
−α−1

ji αki,j = H−1
j Hk,j , we obtain the Lamé equations in the classical form but with the

following additional constraint:
n∑

i=1

H 2
i = constant.

This system is sometimes called the ‘generalized wave equation’ [5] because in the case n = 2
it reduces to the wave equation ϑ,11−ϑ,22= 0 (where cosϑ := α11). In the case n = 3 we
obtain a system of six nonlinear partial differential equations for three unknowns, H1, H2 and
H3, with the algebraic constraint H 2

1 + H 2
2 + H 2

3 = constant.
The second example has a similar form:

�,k = 1

2
γk

(
λak − 1

λ
γn+1akγn+1 + bk

)
� (k = 1, . . . , n) (3)

where γµ (µ = 1, . . . , 2n) are also generators of C(2n) and ak := ∑n
j=1 αkjγn+j , bk :=∑n

j=1 βkjγj . Note that γn+1akγn+1 = αk1γn+1 −
∑n

j=2 αkjγn+j . The compatibility conditions
yield the so-called generalized sine–Gordon system [6]:

n∑
i=1

αjiαki = 0 αji,k +αkiβjk = 0 (j �= k)

βji,k +βjkβki = 0 (i �= j �= k �= i)

βjk,k +βkj ,j +
n∑

i=1

βjiβki = α1jα1k (j �= k)

(4)

where indices i, j, k run from 1 to n.
Almost identical spectral problems can be found in the paper by Ablowitz et al [5], where

instead of Clifford numbers so(n, n) matrices have been used. In both cases the wave function
� takes values in the group Spin(2n) (in a matrix representation the columns of � can be
identified with linearly independent spinor solutions). The simplest example of an application
of the Spin group in the soliton theory is the AKNS class of integrable systems. Some of
its members (e.g. the sine–Gordon equation) are associated in a natural way with the SO(3)
group. However, from both technical and theoretical points of view it is better to use the
covering group Spin(3) � SU(2) (compare [7]).

Both examples have a disadvantage (typical for spectral problems of high degree): the
associated nonlinear systems involve a large number of equations and fields. The important
point is to find some simple characterization of such systems. A natural possibility is to define
geometrical objects which are in one-to-one correspondence with solutions to the system under
consideration.

In this context it is worthwhile to mention the so-called ‘soliton surface approach’ ([8–
10], compare also [11–13]), which associates the modern theory of solitons with the classical
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differential geometry in the spirit of Bianchi, Darboux and other great geometers of the 19th
century [14].

Given a matrix wavefunction � let us define F using the so-called Sym–Tafel formula
F = �−1�,λ [8]. The matrix F is an element of some linear space. If � assumes values
in a matrix Lie group, then F = F(x, t; λ) is a λ-family of submanifolds immersed in the
corresponding Lie algebra.

The case of � ∈ SU(2) is of special importance. F describes a surface immersed in
su(2) which is well known to be identified with the three-dimensional Euclidean space. Many
applications in differential geometry and in physics have been found [9, 11, 15, 16]. Let us
mention the localized induction equation describing the motion of a single vortex filament in an
ideal fluid [17,18]. The soliton surface approach gives a natural correspondence between this
equation, the nonlinear Schrödinger equation and the one-dimensional continuum Heisenberg
ferromagnet model [15, 17]. Another good example is given by the sine–Gordon equation
ϕ,xt = sin ϕ. The corresponding ‘soliton surfaces’ are pseudospherical surfaces in R3, the
radius vector solves a model of the relativistic string and the normal vector N solves the
two-dimensional O(3)-invariant σ -model: N,tt −N,xx +(N,2t −N,2x )N = 0 [15].

The main advantage of the soliton surface approach consists in explicit formulas for the
radius vector F . In other approaches (in the case of localized induction equation compare,
e.g., [19]) one has first to solve a nonlinear system associated with a given model, and then to
solve linear differential equations to reconstruct F . This second step, involving cumbersome
calculations, is omitted from our approach.

In both examples discussed in this letter F = �−1�,λ admits a nice interpretion. In the
first case F = �−1�,λ |λ=0 has the form

F = F (1)γn+1 + F (2)γn+2 + · · · + F (n)γ2n (5)

where F (k) := Fk1γ1 + Fk2γ2 + · · · + Fknγn for k = 1, . . . , n and Fkj are scalar functions of
x1, . . . , xk . One can prove that for any k the vector F (k) (considered as a function in Rn, i.e.
F (k) ←→ [Fk1, . . . , Fkn]) describes an orthogonal net in Rn. In other words, F describes a
submanifold immersed in Rn2

(Cartesian product of n copies of Rn) and projecting it on the
spaces Rn we obtain n copies of orthogonal nets. In the second case, one can prove that F
(evaluated at λ = 1) explicitly describes n-dimensional Lobachevsky spaces (i.e. spaces of
constant negative curvature) immersed in Euclidean spaces of dimension 2n− 1 [20].

The first example can be generalized as follows. Let V and W be orthogonal vector
spaces (dim V = r , dim W = q) endowed with a non-degenerate (but not necessarily positive
definite) scalar product. Consider spectral problems of the form [21]:

�,k = 1
2γk(λak + bk)� (k = 1, . . . , n) (6)

where ak and bk assume values in W and V respectively, γ1, . . . , γr is an orthonormal basis in
V and γr+1, . . . , γr+q is an orthogonal basis inW . Both vector spaces (V andW ) are considered
as subspaces in the Clifford algebra C(V ⊕W), i.e.

γjγk + γkγj = 2ηkj (j, k = 1, . . . , r + q) (7)

(ηkj = 0 for k �= j , ηjj = ±1).
The main result of our letter is the construction of the Darboux–Bäcklund transformation

for any spectral problem of the type (6). Let us postulate the Darboux operator (a natural
analogue of the Darboux matrix) in the following, quite simple, form:

D = f0(λn + κp) (8)

where f0 ∈ W is a constant unit vector, λ and κ are real parameters, n is a W -valued function
and, finally, p is V -valued. One can prove that p2 and n2 do not depend on x1, . . . , xn. Here
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we confine ourselves to the case p2 = n2. We recall that the Darboux transformation is defined
by �̃ = D�. The corresponding transformations for ak and bk can be derived immediately:

ãk = f0nakn
−1f0

b̃k = bk + 2κ〈n|ak〉(〈ek|p−1〉e−1
k − p−1).

(9)

Our earlier results (cf [21,22]) stopped at this point. The crucial problem consisted in finding
an algebraic procedure to construct n and p. The solution turned out to be surprisingly simple:

p + in = �(iκ)(p0 + in0)�(iκ)−1 (10)

where p0 ∈ V and n0 ∈ W are constant. Note that the left-hand side has to be of the desired
form (i.e. an element of V ⊕ iW ) because �(iκ) is an element of the corresponding group Spin
and therefore the conjugation by �(iκ) leaves the space V ⊕ iW invariant.

Are the presented considerations effective? The answer is positive. In spite of the
rather sophisticated setting, one can construct soliton solutions using straightforward, quite
elementary, computations. The algorithm for finding soliton solutions consists of the following
steps.

(1) Find a special solution � = �(λ) (usual starting point of any Darboux–Bäcklund
transformation).

(2) Choose a real parameter κ and compute �(iκ).
(3) Choose constant Clifford vectors: p0 ∈ V , n0 ∈ W and f0 ∈ W .
(4) Compute �(iκ)(p0 + in0)�(iκ)−1. The result is a vector of the form p + in where

p = p(x1, . . . , xn) ∈ V and n = n(x1, . . . , xn) ∈ W .
(5) Compute �̃(λ) := f0(λn + κp)�(λ), which is (automatically!) a new solution to the

considered spectral problem.

The corresponding transformations for F and F̃ (k) have also a compact form:

F̃ = F + κ−1�(0)−1p−n�(0)

F̃ (k) = F (k) + νkκ
−1�(0)−1p−1�(0)

where νk are components of n (i.e. n = ∑q

k=1 νkγr+k). Note that we add to the given F (k)

a segment (vector) of a constant length. This is a typical property of standard Bäcklund
transformations (e.g. the transformation for the sine–Gordon equation and pseudospherical
surfaces).

The identical procedure of constructing soliton solutions can be applied to a more general
class of spectral problems as well:

�,k = γkuk� (k = 1, . . . , n) (11)

where γk generate a Clifford algebra defined by (7) and uk are linear combinations of γk
with (scalar) coefficients depending on x1, . . . , xn and λ. We assume that uk = uk1 + uk2,
where uk1 assume values in V , uk2 assume values in W and, finally, uk1(−λ) = uk1(λ),
uk2(−λ) = −uk2(λ). All additional constraints needs separate considerations. For instance,
in the case of the spectral problem (3) the coefficients by λ are closely related to coefficients
by 1/λ. Indeed, we have uk(1/λ) = −γn+1uk(λ)γn+1.

The range of applications of the nonlinear systems associated with orthogonal coordinates
(usually they are systems of hydrodynamic type [23]) varies from classical mechanics [24] to
the quantum field theory [25].

An apparently novel application of the presented spectral problems is their close
connection with the Dirac equation for a massless particle in the electromagnetic field. Consider
the spectral problem (6). Let assume r = n = 4 and γ 2

1 = γ 2
2 = γ 2

3 = −γ 2
4 = −1. Nothing

is assumed about q. We assume that ak and bk are imaginary, i.e. ak = −i
∑4+q

j=5 akjγj and
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bk = −i
∑4

j=1 bkjγj (akj and bkj being real functions). Multiplying every equation (6) from

the left by iγ−1
k , adding them together and changing the notation, γ−1

k → γ k (k = 1, 2, 3),
γ−1

4 → γ 0, we obtain
3∑

µ=0

γ µ(i∂µ − Aµ)� = λC�

whereAµ (µ = 0, 1, 2, 3) are (real) coefficients by γ µ in i
2

∑4
ν=1 bν andC := i

2

∑4
ν=1 aν . For

λ = 0 we recognize the Dirac equation for a massless particle in the electromagnetic field. Its
solution � has to satisfy the remaining three independent equations of the system (6) as well.
Therefore we can generate in this way just a special class of solutions to the Dirac equation.

The equations (9) do not change if ak → iak and bk → ibk . Therefore the presented
construction of the Darboux–Bäcklund transformation is valid for the Dirac equation case as
well.

This rather unexpected relation of the Dirac equation to the integrable system of Lamé-type
equations gives a clear possibility of constructing new exact solutions of the Dirac equation.

In conclusion let us note that the class of spectral problems considered in this letter is
associated with the 3+1 Dirac equation (and its higher-dimensional analogues) in a similar way
as the KdV hierarchy is associated with the Schrödinger operator and the modKdV hierarchy
with the 1 + 1 Dirac operator. We stress that in both cases Spin groups have a fundamental
role in the construction of the Darboux–Bäcklund transformation.

This research has been supported partially by the Polish State Committee for Scientific
Research under the KBN grant no 2 P03B 143 15.
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